B.Tech. (Fifth Semester) Examination 2013

Analysis and Design of Algorithm (IT3105N)
(Information Technology)

Model Answer

Section A
Q.1- (20x1=10)
1. Merge Sortuses........ccceevvennnnn.. approach to algorithm design.
Ans: Divide and conquer
2. Rod Cutting problem uses........................ approach to algorithm design.
Ans: Dynamic Programming
3. Edit distance problem uses........................ approach to algorithm design.
Ans: Dynamic Programming
4. Big O notation gives bound of the function.
Ans: Upper bound
5. Notation works on lower bound of the function.
Ans: Big omega
6. Notation is bounded by both upper and lower bound.

Ans: Theta Notation

7. The worst case complexity of Merge sort algorithm is.......................... .
Ans: O (n log n)

8. Famous Algorithm used to find All-pair shortest path is
Ans: Flloyd-Warshall Algorithm.

9. Dijkstra Algorithm is a Algorithmased-to-find-AH-patr-shortest-path.
Ans: Single Source Shortest path.

10. In All-pair shortest path we create two matrices, they are and

Ans: Weight matrics and predecessor matrics.
11. Kruskal Algorithm is used for

Ans: Minimum spanning tree.
12. Accordingcovueennn.n. theory at every stage each node has a bound.
Ans: Branch and bound

13. To remove problem with recusion stack in devide and conger

14.

15.

16.

17.

18.

19.

20.

Ans: sorting the smaller side and simultaneously removing the tail recursion.

NP Complete problems are

Ans: NP problems for which LeNP and all problems in NP can be reduced to P

To implement Tree we need
Ans: Linked List

Prim’s Algorithm is used for

Data Structure.

Ans: Minimum Spanning Tree
Floyd-Warshall Algorithm is used for
Ans: All pair shortest Path

Time Complexity of Binary Search in average case is

Ans: O (log; n)

Collection of similar type of data elements is known as

Ans: Array

The items can be broken into smaller pieces to fill knapsack, is known as

problem.

Ans: Fractional Knapsack problem

Section B

knapsack

Note: Attempt any one question from each unit. Each question carries 8 marks.

UNIT 1

Q 1. Explain Quick sort algorithm. What are the two drawbacks of quick sort algorithm and how they

can be removed?
Ans:

The algorithm. Quicksort follows the general paradigm
of divide-and-conquer. which means 1t divides the un-
sorted array mto two. it recurses on the two pieces, and 1t
finally combines the two sorted pieces to obtain the sorted
array. An interesting feature of quicksort is that the divide
step separates small from large items. As a consequence,
combining the sorted pieces happens automatically with-
out doing anything extra.

void QUICKSORT(int £,r)
if £ < r thenm = SPLIT({,r);
QUICKSORT(£,m — 1}:
QUICKSORT(m + 1,7)

endif.

We assume the items are stored in A[0..n — 1]. The array
15 sorted by calling QUICKSORT(0,n — 1).

Splitting. The performance of quicksort depends heav-
ily on the performance of the split operation. The effect of
splitting from £ to r 1s:

e 1 = A|/] 1s moved to its correct location at A[m)|;
e no item in A[f..m — 1] is larger than x;

¢ no item in A[m + 1..r] is smaller than .

Figure 1 illustrates the process with an example. The nine
items are split by moving a pointer i from left to right
and another pointer j from right to left. The process stops
when i and j cross. To get sphitting night 1s a bit delicate,
in particular in special cases. Make sure the algonthm 1s
correct for (1) x 1s smallest stem. (11) x 15 largest ttem. (1)
all items are the same.

int SPLIT(int £,7)
z=Af;i=¢ j=r+1;
repeat repeat i++until = < Afi];
repeat j--until z = A[j];
if i < j then SWAP(i,j) endif
until i = j;
SWAP(£,j): return j.

354
T

354214|E||E|
T

49
.

Figure 1: First, i and j stop at items 9 and 1, which are then
swapped. Second, i and j cross and the pivot, 7, is swapped with
item 2.

[<]
-]

(=]
(]
LA
4
[*]
—

Special cases (1) and (111) are ok but case (1) requires a
stopper at A[r + 1]. This stopper must be an item at least
as large as z. If r < n — 1 this stopper is automatically
given. For r = n — 1, we create such a stopper by setting
Aln] = +00.

Randomization. One of the drawbacks of quicksort. as
described until now, 1s that it 15 slow on rather common
almost sorted sequences. The reason are pivots that tend
to create unbalanced splittings. Such pivots tend to oc-
cur in practice more often than one might expect. Hu-
man and often also machine generated data 1s frequently
biased towards certain distributions (in this case, permuta-
tions), and it has been said that 80% of the time or more,
sorting 1s done on either already sorted or almost sorted
files. Such situations can often be helped by transferring
the algorithm’s dependence on the input data to mternally
made random choices. In this particular case, we use ran-
domization to make the choice of the pivot independent of
the input data. Assume RANDOM(/, r) returns an integer
p € [¢, r] with uniform probabality:

1

Pl'ﬂb[RP:.}IDUM[f._?‘] = p] =]"—_F-I-l

foreach / < p < r. In other words, each p € [, 7] 1s
equally likely. The following algorithm splits the array
with a random pivot:

int RSPLIT(int £, 1)
p = RANDOM({,r): SWAP(£,p):
return SPLIT(f, 7).

We get a randomized mmplementation by substituting
RSPLIT for SPLIT. The behavior of this version of quick-
sort depends on p. which is produced by a random number
generator.

Stack size. Another drawback of quicksort 1s the recur-
sion stack., which can reach a size of {2(n) entries. This
can be improved by always first sorting the smaller side
and simultaneously removing the tail-recursion:

void QUICKSORT(int £,7)
=1L j=r;
whilei < jdo
m = RSPLIT(i, j):
ifm—i<j—m
then QUICKSORT(i,m —1);i=m+1
else QUICKSORT (m + 1,j);j=m—1
endif
endwhile.

In each recursve call to QUICKSORT. the length of the ar-
ray 1s at most half the length of the array in the preceding
call. This implies that at any moment of time the stack
contains no more than 1 + log, n entries. Note that with-
out removal of the tail-recursion, the stack can reach £2(n)
entries even if the smaller side is sorted first.

Q 2. Write and explain algorithm of Selection sort with proper example..
ANS: answer should contain following points

1. algorithm of Selection sort

2. explanation of the algorithm

3. one proper example with diagram.

UNIT 2
Q 3. Explain 0/1 Knapsack problem with proper example and prove that dynamic programming is better
for 0/1 knapsack problem.

Ans: Greedy versus dynamic programming

Because both the greedy and dynamic-programming strategies exploit optimal sub-
structure, you might be tempted to generate a dynamic-programming solution to a
problem when a greedy solution suffices or, conversely, you might mistakenly think
that a greedy solution works when in fact a dynamic-programming solution is re-
quired. To illustrate the subtleties between the two technigues, let us investigate
two variants of a classical optimization problem.

The -1 knapsack problem is the following. A thief robbing a store finds n
items. The /th item is worth v; dollars and weighs w; pounds, where v; and w; are
integers. The thief wants to take as valuable a load as possible, but he can carry at
most W pounds in his knapsack, for some integer W. Which items should he take?
(We call this the 0-1 knapsack problem because for each item, the thief must either

take it or leave it behind: he cannot take a fractional amount of an item or take an
itern more than once.)

In the fractional knapsack problem, the setup is the same, but the thief can take
fractions of items, rather than having to make a binary (0-1) choice for each item.
You can think of an item in the 0-1 knapsack problem as being like a gold ingot
and an item in the fractional knapsack problem as more like gold dust.

Both knapsack problems exhibit the optimal-substructure property. For the 0-1
problem, consider the most valuable load that weighs at most W pounds. If we
remove item j from this load, the remaining load must be the most valuable load
weighing at most W — w; that the thief can take from the n — 1 original items
excluding j. For the comparable fractional problem, consider that if we remove
a weight w of one item j from the optimal load, the remaining load must be the
most valuable load weighing at most W — w that the thief can take from the n — 1
original items plus w; — w pounds of item j.

Although the problems are similar, we can solve the fractional knapsack problem
by a greedy strategy, but we cannot solve the 0-1 problem by such a strategy. To
solve the fractional problem, we first compute the value per pound v; /w; for each
item. Obeying a greedy strategy, the thief begins by taking as much as possible of
the item with the greatest value per pound. If the supply of that item is exhausted
and he can still carry more, he takes as much as possible of the item with the next
greatest value per pound, and so forth, until he reaches his weight limit W. Thus,
by sorting the items by value per pound, the greedy algorithm runs in O(nlgn)
time. We leave the proof that the fractional knapsack problem has the greedy-
choice property as Exercise 16.2-1.

To see that this greedy strategy does not work for the (-1 knapsack problem,
consider the problem instance illustrated in Figure 16.2(a). This example has 3
items and a knapsack that can hold 50 pounds. Item 1 weighs 10 pounds and
is worth 60 dollars. Item 2 weighs 20 pounds and is worth 100 dollars. Item 3
weighs 30 pounds and is worth 120 dollars. Thus, the value per pound of item 1 is
6 dollars per pound, which is greater than the value per pound of either item 2 (5
dollars per pound) or item 3 (4 dollars per pound). The greedy strategy, therefore,
would take item 1 first. As you can see from the case analysis in Figure 16.2(b),
however, the optimal solution takes items 2 and 3, leaving item 1 behind. The two
possible solutions that take item 1 are both suboptimal.

For the comparable fractional problem, however, the greedy strategy, which
takes item 1 first, does yield an optimal solution, as shown in Figure 16.2(c). Tak-
ing item 1 doesn’'t work in the 0-1 problem because the thief is unable to fill his
knapsack to capacity, and the empty space lowers the effective value per pound of
his load. In the 0-1 problem, when we consider whether to include an item in the
knapsack, we must compare the solution to the subproblem that includes the item
with the solution to the subproblem that excludes the item before we can make the

20
i - 301 $80
item 3 30]$120
o S— E_— +
item 2 50 + 30| $120
— 20 $100 200 5100
item I 30 + + +
20 200 $100 — 1 1
10] $60 10] %60 10} $60
a0 100 $120 knapsack =4$220 = %160 =4%180 = $240
(a) (b) (c)

Figure 16.2 An example showing that the greedy strategy does not work for the 0-1 knapsack
problem. (a) The thief must select a subset of the three items shown whose weight must not exceed
50 pounds. (b) The optimal subset includes items 2 and 3. Any solution with item | is suboptimal,
even though item | has the greatest value per pound. (¢) For the fractional knapsack problem, taking
the items in order of greatest value per pound yields an optimal solution.

Q4. Write and Explain floyed-warshall Algorithm. Find out the weight metrics and predecessor metrics
for given graph using floyed-warshall Algorithm:

Ans:

The Floyd-Warshall algorithm

In this section, we shall use a different dynamic-programming formulation to solve
the all-pairs shortest-paths problem on a directed graph &G = (V. E). The resah-
ing algorithm, known as the Floyd-Warshall algorithm, runs in ©{1V*) tme. As
before, negative-weight edges may be present, but we assume that there are no
negative-weight cycles. As in Section 25.1, we follow the dynamic-programming
process to develop the algorithm. After smdying the resulting algorithm, we
present a similar method for finding the transitive closure of a directed graph.

The structure of a shortest path

In the Floyd-Warshall algorithm, we characterize the structure of a shortest path
differently from how we characterized it in Section 25.1. The Floyd-Warshall algo-
rithm considers the intermediate vertices of ashortest path, where an infermediate
vertex of a simple path p = (v, vy, ..., vy} is any vertex of p other than v, or vy,
that is, any vertex in the set {va, vy, ... v }

The Floyd-Warshall algorithm relies on the following observation. Under our

assumption that the vertices of & are V = {1,2,..., n}, let us consider a subset
| My SO k } of vertices for some k. For any pair of vertices i, j € V', consider all
paths from i to j whose intermediate vertices are all drawn from {1.2,..., k}, and
ket p be a minimum-weight path from among them. (Path p is simple.) The Floyd-
Warshall algorithm exploits a relationship between path p and shortest paths from i
to j with all intermediate vertices in the set {1,2,..., k — 1}. The relationship
depends on whether or not & is an intermediate vertex of path p.

If k is not an intermediate vertex of path p, then all intermediate vertices of
path p are in the set {1,2...., k —1}. Thus, a shortest path from verex i
to vertex j with all intermediate vertices in the set {1.2,..., k—1}isakoa
shortest path from i to j with all intermediate vertices in the set {1,2,..., k}.

If k isan intermediate vertex of path p, then we decompose pinto i “4 k <3 j,
as Figure 25.3 illustrates. By Lemma 24.1, p, is a shortest path from i to &
with all intermediate vertices in the set {1.2....,k}. In fact, we can make a
slightly stronger statement. Becanse vertex k is not an intermediate vertex of
path p,, all intermediate vertices of p, are in the set {1,2,.... k — 1}. There-

all intermediate vertices in {1,2,....k — 1} all intermediate vertices in {1,2,..., k—1}%

(—"'"_——FFAH——_"‘"\#"_'_._HA-‘_‘_-_"‘"\
M a 2
@
(D
‘a—._________v_______;

p: all intermediate vertices in {1,2, ..., Kk}

Figure 253 Path pis a shortest path from vertex § to vertex j, and k is the highest-numbered
intermediate vertex of p. Path py, the portion of path p from vertex § to vertex &, has all intermediate
vertices inthe set {1,2, ..., k — 1}. The same holds for path p2 from vertex k to vertex j.

fore, p, is a shortest path from i to k with all intermediate vertices in the set
11,2,...,k — 1}. Similarly, p, is a shortest path from vertex k to vertex j with
all intermediate vertices in the set {1.2.... .k —1}.

A recursive solution to the all-pairs shortest-paths problem

Based on the above observations, we define a recursive formulation of shortest-
path estimates that differs from the one in Section 25.1. Let d{.ﬁ‘.‘f} be the weight
of a shortest path from vertex i to vertex j for which all intermediate vertices
are in the set {1.,2.....k}. When k = 0, a path from vertex i to vertex j with
no intermediate vertex numbered higher than 0 has no intermediate vertices at all.
Such a path has at most one edge, and hence ‘:’I:'T} = w;;. Following the above

discussion, we define r;féfj recursively by

4% _) Y ifk =0, (25.5)
7 | min(dF VAT +dx V) itk =1, :
Because for a_n%(}:ua[h, all intermediate vertices are in the set {1,2,...,n}, the ma-

trix D™ = (]) gives the final answer: a’é"} =8(i, j)foralli,j € V.

Computing the shortest-path weights bottom up

Based on recurrence (25.5), we can use the following bottom-up procedure to com-
pute the values déf) in order of increasing values of k. Its input is an nxn matrix W
defined as in equation (25.1). The procedure retums the matrix D™ of shortest-
path weights.

FLOYD-WARSHALL(W)

|

2

3

4 let D% — {d.'[‘.{‘:') be a new n ¥ n matrix

5 fori = lton

6 for j = lton

7 df = min (¥ V. af™" +a’™v)
8 return D™

Figure 25.4 shows the matrices D% computed by the Floyd-Warshall algorithm
for the graph in Figure 25.1.

The running time of the Floyd-Warshall algorithm is determined by the triply
nested for loops of lines 3-7. Because each execution of line 7 takes O(1) time,
the algorithm runs in time ®(n?). As in the final algorithm in Section 25.1, the
code 1is tight, with no elaborate data structures, and so the constant hidden in the
©-notation is small. Thus, the Floyd-Warshall algorithm is quite practical for even
moderate-sized input graphs.

Solution for the graph in figure:

|

o B |
_a ===

Z £ Z
.|.__...L.|._.|.__._1_
A =z Z
= = -
—_— == =
NNJ....N
.|.___.1_.|._.|._
Z & &
o R | -
NNNJ....N
. .

ll

=

—

=
e

7~88°
g 8=
"SRy
> 383

plol

- -
—_— = —- =
= =
.I.__...L.l._.l.__._.._
= A
| =]
R — . — =
NNA.N
.|._3 -
= =
" R I | =]
NNNJ....N
" .
I
—_
—
e
=
————

=+ [=]
?m

g= g
3”.4..}@

>8R 2

pty

= N =

2
2
2
NIL
5 NIL

NIL NIL
NIL

4
NIL NIL

‘NIL

NIL

= | NI
4

NIL

mn'2

—4
7

3”4.}&

pt2

= 0

NIL

g 4 |
—— =
zz 1z
2 e 2
z z
g 4 4 |
zzz @z
: :

I

=

Lag]

a4

=

-+ -

—_— o — —

NIL

—_— o — —

NIL

NIL
4
4
4
4

—4
1
3
2
0

-3 2
4
]

-5 0
1

pis)

UNIT 3
Q5. Write and explain the algorithm for Rod Cutting Problem in detail using proper example.
Ans:
15.1 Rod cutting

Our first example uses dynamic programming to solve a simple problem in decid-
ing where to cut steel rods. Serling Enterprises buys long steel rods and cuts them
into shorter rods, which it then sells. Each cut is free. The management of Serling
Enterprises wants to know the best way to cut up the rods.

We assume that we know, for i = 1,2,..., the price p; in dollars that Serling
Enterprises charges for a rod of length 7 inches. Rod lengths are always an integral
number of inches. Figure 15.1 gives a sample price table.

The rod-cutting problem is the following. Given a rod of length n inches and a
table of prices p; fori = 1,2, ..., n, determine the maximum revenue r, obtain-
able by cutting up the rod and selling the pieces. Note that if the price p, for arod
of length n is large enough, an optimal solution may require no cutting at all.

Consider the case when n = 4. Figure 15.2 shows all the ways to cut up a rod
of 4 inches in length, including the way with no cuts at all. We see that cutting a
4-inch rod into two 2-inch pieces produces revenue p, + p, = 5+ 5 = 10, which
is optimal.

We can cut up a rod of length n in 2*~! different ways, since we have an in-
dependent option of cutting, or not cutting, at distance i inches from the left end,

3 & T 8 9 10
10 17 17 20 24 30

length i |
price p; |

1
1

aj
oo

Figure 15.1 A samplk price table for rods. Each rod of length [inches cams the company p;
dollars of revenue.

Q1)) 0d JJ) Q)0)) g J))Ha)
(@) (b) © @

1 1 5 1 5 1 5 1 1 1 1 1 1
e o PO OO
(e) (f) (2) (h)

Figure 15.2 The 8 possible ways of cutting up a rod of length 4. Above each piece is the

value of that piece, according to the sample price chant of Figure 15.1. The optimal strategy is
part (¢) —cutting the rod into two picces of length 2— which has total value 10,

Recursive top-down implementation

The following procedure implements the computation implicit in equation (15.2)
in a straightforward, top-down, recursive manner.

CuT-Ron(p,n)

1 ifn==0

2 return 0

I g=—-—

4 fori = lton
5 g = max(g, p[i] + CUT-ROD(p.n —i))
6 return g

Procedure CUT-ROD takes as input an array p[l..n] of prices and an integer n,
and it retumns the maximum revenue possible for a rod of length n. If n = 0, no
revenue is possible, and so CUT-ROD returns O in line 2. Line 3 initializes the
maximum revenue g to —oc, so that the for loop in lines 4-5 correctly computes
¢ = MaXj=j=n(p; + CUT-ROD(p,n —i)); line 6 then returns this value. A simple
induction on n proves that this answer is equal to the desired answer r,, using
equation (15.2).

There are usually two equivalent ways to implement a dynamic-programming
approach. We shall illustrate both of them with our rod-cutting example.

The first approach is top-down with memoization.” In this approach, we write
the procedure recursively in a natural manner, but modified to save the result of
each subproblem (usually in an array or hash table). The procedure now first checks
to see whether it has previously solved this subproblem. If so, it returns the saved
value, saving further computation at this level; if not, the procedure computes the
value in the usual manner. We say that the recursive procedure has been memoized,
it “remembers” what results it has computed previously.

Here is the the pseudocode for the top-down CUT-ROD procedure, with memo-
ization added:

MEMOIZED-CUT-ROD(p, 1)

[

let r[0..n] be a new array

2 fori =0ton

3 rli] = —oo

4 return MEMOIZED-CUT-ROD-AUX (p.n, 1)

MEMOIZED-CUT-ROD-AUX (p,n,r)

1 ifrn]=0

2 return r(n|

3 dn==0

+ qg=20

3 elsegq = —o00

6 fori = lton

7 ¢ = max(q, p[i] + MEMOIZED-CUT-ROD-AUX(p.n —i.r))
8 r[n]l=gq

9 return g

Here, the main procedure MEMOIZED-CUT-ROD initializes a new auxiliary ar-
ray r[0..n] with the value —oo, a convenient choice with which to denote “un-
known.” (Known revenue values are always nonnegative.) It then calls its helper
routine, MEMOIZED-CUT-ROD-AUX.

The procedure MEMOIZED-CUT-ROD-AUX is just the memoized version of our
previous procedure, CUT-ROD. It first checks in line 1 to see whether the desired
value 1s already known and, if it is, then line 2 returns it. Otherwise, lines 3-7
compute the desired value g in the usual manner, line 8 saves it in r[n], and line 9
returns it.

The bottom-up version is even simpler:

BoTTOM-UP-CUT-ROD(p, 1)

1 letr[0..n]bea new array

2 rjol=0

3 forj=1ton

4 g = —o0

5 fori = 1toj

6 g = max(q, p[i] + r[j —i])
7 rlil=4

8 return r(nj

For the bottom-up dynamic-programming approach, BOTTOM-UP-CUT-ROD
uses the natural ordering of the subproblems: a problem of size i is “smaller”
than a subproblem of size j if i < j. Thus, the procedure solves subproblems of
sizes j = 0,1,...,n,in that order.

Line 1 of procedure BOTTOM-UP-CUT-ROD creates a new array r[0..n] in
which to save the results of the subproblems, and line 2 initializes r[0] to 0, since
arod of length 0 earns no revenue. Lines 3—6 solve each subproblem of size j, for
J=1,2.... n, in order of increasing size. The approach used to solve a problem
of a particular size j is the same as that used by CUT-ROD, except that line 6 now

Figure 154 The subproblem graph for the rod-cutting problem with 1 = 4. The vertex labels
give the sizes of the corresponding subproblems. A directed edge (x, ¥) indicates that we need a
solution to subproblem ¥ when solving subproblem x. This graph is a reduced version of the tree of
Figure 15.3, in which all nodes with the same label are collapsed into a single vertex and all edges
go from parent to child.

directly references array entry r[j — i] instead of making a recursive call to solve
the subproblem of size j — i. Line 7 saves in r[j] the solution to the subproblem
of size j. Finally, line 8 returns r[n], which equals the optimal value r,.

The bottom-up and top-down versions have the same asymptotic running time.
The running time of procedure BOTTOM-UP-CUT-ROD is &(n?), due to its
doubly-nested loop structure. The number of iterations of its inner for loop, in
lines 5-6, forms an arithmetic series. The running time of its top-down counterpart,
MEMOIZED-CUT-ROD, is also @(n?), although this running time may be a little
harder to see. Because a recursive call to solve a previously solved subproblem
returns immediately, MEMOIZED-CUT-ROD solves each subproblem just once. It
solves subproblems for sizes 0.1, ...,n. To solve a subproblem of size n, the for
loop of lines 6-7 iterates n times. Thus, the total number of iterations of this for
loop, over all recursive calls of MEMOIZED-CUT-ROD, forms an arithmetic series,
giving a total of @(n?) iterations, just like the inner for loop of BOTTOM-UP-
CUT-ROD. (We actually are using a form of aggregate analysis here. We shall see
aggregate analysis in detail in Section 17.1.)

Subproblem graphs

When we think about a dynamic-programming problem, we should understand the
set of subproblems involved and how subproblems depend on one another.

The subproblem graph for the problem embodies exactly this information. Fig-
ure 15.4 shows the subproblem graph for the rod-cutting problem withn = 4. It
1s a directed graph, containing one vertex for each distinct subproblem. The sub-

Reconstructing a solution

Qur dynamic-programming solutions to the rod-cutting problem return the value of
an optimal solution, but they do not return an actual solution: a list of piece sizes.
We can extend the dynamic-programming approach to record not only the optimal
value computed for each subproblem, but also a cheice that led to the optimal
value. With this information, we can readily print an optimal solution.

Here is an extended version of BOTTOM-UP-CUT-ROD that computes, for each
rod size j, not only the maximum revenue r;, but also s;, the optimal size of the
first piece to cut off:

EXTENDED-BoTrTOM-UP-CUT-ROD(p. 1)

1 letr[0..n]and s[0..n]be new arrays

2 rfo] =0

3 forj =1ton

4 g = —00

5 fori = 1to j

6 if g < pli] +r[j —i]

7 g = plil+rlj—i]
g s[jl=1

9 rijl=4q

10 return r and s

This procedure is similar to BOTTOM-UP-CUT-ROD, except that it creates the ar-
ray & in line 1, and it updates s[j] in line 8 to hold the optimal size i of the first
piece to cut off when solving a subproblem of size j.

The following procedure takes a price table p and a rod size n, and it calls
EXTENDED-BOTTOM-UP-CUT-ROD to compute the array s[l..n] of optimal
first-piece sizes and then prints out the complete list of piece sizes in an optimal
decomposition of a rod of length n:

PRINT-CUT-ROD-SOLUTION (p,)
1 (r,s) = EXTENDED-BOTTOM-UP-CUT-ROD(p. 1)

2 whilen = 0
3 print s[n]
- n = n— s[nj

In our rod-cutting example, the call EXTENDED-BOTTOM-UP-CUT-ROD(p, 10)
would return the following arrays:

i Jo123 4 5 6 7 8 9 10
ri][0 1T 5 8 10 13 17 I8 22 25 30
]|l 23 2 2 6 1 2 3 10

A call to PRINT-CUT-ROD-SOLUTION(p, 10) would print just 10, but a call with
n = 7 would print the cuts 1 and 6, corresponding to the first optimal decomposi-
tion for r; given earlier.

Q 6. What is Greedy Algorithm? Explain with Proper example. Also write the general characteristics of

Greedy Algorithm.
Ans:

5 Greedy Algorithms

The philosophy of being greedy 1s shortsightedness. Al-
ways go for the seemingly best next thing, always op-
timize the presence. without any regard for the future,
and never change yvour mind about the past. The greedy
paradigm 1s typically applied to optimization problems. In
this section, we first consider a scheduling problem and
second the construction of optimal codes.

A scheduling problem. Consider a set of activities
1,2.....,n. Activity i starts at tiime s; and finishes
at time f; > s;. Two activities i and j overlap if
[si. fi] N [s4, fi] # 0. The objective is to select a maxi-
mum number of pairwise non-overlapping activities. An
example 15 shown in Figure 6. The largest number of ac-

d ¢ —
e 4=

d
L | L 1
ak 3 gt 1

time

Figure 6: A best schedule is ¢, e, f, but there are also others of
the same size.

tivities can be scheduled by choosing activities with early
finish times first. We first sort and reindex such that i < j
implies f; < f;.

S = {1} last =1;
fori=2tondo
if fra=s < 5; then
S=5u{i}:;last =1
endif
endfor.

The running time 1s O{n log n) for sorting plus O(n) for
the greedy collection of activities.

It 15 often difficult to determine how close to the opti-
mum the solutions found by a greedy algonithm really are.
However. for the above scheduling problem the greedy
algorithm always finds an optimum. For the proof let
I =i < iz < ... < i} be the greedy schedule con-
sttucted by the algonthm. Let j; < j» < ... < jy be any
other feasible schedule. Since i, = | has the earliest fimish
time of any activity. we have f;, < f;, . We can therefore
add i; to the feasible schedule and remove at most one ac-
tivity, namely j;. Among the activities that do not overlap
i1. iz has the earliest finish time, hence f;, < f;,. We can
again add i, to the feasible schedule and remove at most

one activity, namely j, (or possibly j, if 1t was not re-
moved before). Eventually, we replace the entire feasible
schedule by the greedy schedule without decreasing the
number of activities. Since we could have started with a
maximum feasible schedule, we conclude that the greedy
schedule is also maximum.

General Characteristics of Greedy algorithms:

A greedy algorithm obtains an optimal solution to a problem by making a sequence
of choices. At each decision point, the algorithm makes choice that seems best at
the moment. This heuristic strategy does not always produce an optimal solution,
but as we saw in the activity-selection problem, sometimes it does. This section
discusses some of the general properties of greedy methods.

The process that we followed in Section 16.1 to develop a greedy algorithm was
a bit more involved than is typical. We went through the following steps:

1. Determine the optimal substructure of the problem.

2. Develop a recursive solution. (For the activity-selection problem, we formu-
lated recurrence (16.2), but we bypassed developing a recursive algorithm based
on this recurrence.)

3. Show that if we make the greedy choice, then only one subproblem remains.

4. Prove that it is always safe to make the greedy choice. (Steps 3 and 4 can occur
in either order.)

5. Develop arecursive algorithm that implements the greedy strategy.

6. Convert the recursive algorithm to an iterative algorithm.

In going through these steps, we saw in great detail the dynamic-programming un-
derpinnings of a greedy algorithm. For example, in the activity-selection problem,
we first defined the subproblems S;;, where both i and j varied. We then found
that if we always made the greedy choice, we could restrict the subproblems to be
of the form 5.

Alternatively, we could have fashioned our optimal substructure with a greedy
choice in mind, so that the choice leaves just one subproblem to solve. In the
activity-selection problem, we could have started by dropping the second subscript
and defining subproblems of the form S;. Then, we could have proven that a greedy
choice (the first activity a,, to finish in S;), combined with an optimal solution to
the remaining set §,, of compatible activities, yields an optimal solution to Sj.
More generally, we design greedy algorithms according to the following sequence
of steps:

1. Cast the optimization problem as one in which we make a choice and are left
with one subproblem to solve.

2. Prove that there is always an optimal solution to the original problem that makes
the greedy choice, so that the greedy choice is always safe.

3. Demonstrate optimal substructure by showing that, having made the greedy
choice, what remains 1s a subproblem with the property that if we combine an
optimal solution to the subproblem with the greedy choice we have made, we
arrive at an optimal solution to the original problem.

UNIT 4
Q7. What is Binary Search Tree? How searching is performed in Binary Search Tree? How to find out
Minima Maxima in the Binary Search Tree?
Ans:

A binary search tree is organized, as the name suggests, in a binary tree, as shown
in Figure 12.1. We can represent such a tree by a linked data structure in which
each node 1s an object. In addition to a key and satellite data, each node contains
attributes left, right, and p that point to the nodes corresponding to its left child,

(a) (b)

Figure 12.1 Binary search trees. For any node X, the keys in the left subtree of X are at most X. ke=y,
and the keys in the right subtree of X are at keast X key. Different binary search trees can represent
the same set of values. The worst-case running time for most search-tree operations 15 proportional
to the height of the tree. (a) A binary search tree on 6 nodes with height 2. (b) A less efficient binary
search tree with height 4 that contains the same keys.

its right child, and its parent, respectively. If a child or the parent is missing, the
appropriate attribute contains the value NIL. The root node is the only node in the
tree whose parent is NIL.

The keys in a binary search tree are always stored in such a way as to satisfy the
bhinary-search-tree property:

Let x be a node in a binary search tree. If y 1s a node in the left subtree
of x, then y.key = x.key. If y is a node in the right subtree of x, then
v.key = x.key.

Searching

We use the following procedure to search for a node with a given key in a binary
search tree. Given a pointer to the oot of the tree and a key k, TREE-SEARCH
returns a pointer to a node with key k if one exists: otherwise, it returns NIL.

TREE-SEARCH(x, k)
1 if x==NILork == x.key

2 return x

3 itk < x.key

4 return TREE-SEARCH (x.left. k)
5 else return TREE-SEARCH(x.right k)

The procedure begins its search at the root and traces a simple path downward in
the tree, as shown in Figure 12.2. For each node x it encounters, it compares the
key k with x.key. If the two keys are equal, the search terminates. If k is smaller
than x.key, the search continues in the left subtree of x, since the binary-search-
tree property implies that k could not be stored in the right subtree. Symmetrically,
if k& is larger than x.key, the search continues in the right subtree. The nodes
encountered during the recursion form a simple path downward from the root of
the tree, and thus the munning time of TREE-SEARCH is O(h), where h is the height
of the tree.

ITERATIVE-TREE-SEARCH (x, k)

I while x £ NIL and k # x.key
2 il kb < x.key

3 x = x.left

+ else x = x.right

5 return x

Minimum and maximum

We can always find an element in a binary search tree whose key is a minimum by
following left child pointers from the root until we encounter a NIL, as shown in
Figure 12.2. The following procedure retums a pointer to the minimum element in
the subtree rooted at a given node x, which we assume to be non-NIL:

TREE-MINIMUM (X)

I while x_left # NIL
2 x = x.left
3 return x

The binary-search-tree property guarantees that TREE-MINIMUM is correct. If a
node x has no left subtree, then since every key in the right subtree of x is at least as
large as x_key, the minimum key in the subtree rooted at x is x.key. If node x has
a left subtree, then since no key in the right subtree is smaller than x.key and every
key in the left subtree is not larger than x.key, the minimum key in the subtree
rooted at x resides in the subtree rooted at x./left.

The pseudocode for TREE-MAXIMUM is symmetric:

TREE-MAXIMUM (x)

1 while x.right # NIL
2 X = X.right
3 return x

Both of these procedures run in O(h) time on a tree of height h since, as in TREE-
SEARCH, the sequence of nodes encountered forms a simple path downward from
the root.

Q8. Explain minimum spanning tree problem. Explain Prim’s algorithm for the solution of minimum
spanning tree problem with proper example.
Ans:
We can model this wiring problem with a connected, undirected graph G =
(V. E), where V is the set of pins, E is the set of possible interconnections between
pairs of pins, and for each edge (u.v) € E, we have a weight w(u, v) specifying
the cost (amount of wire needed) to connect u and v. We then wish to find an
acyclic subset T C E that connects all of the vertices and whose total weight

w(T)= > wu.v)
(uvleT

is minimized. Since T is acyclic and connects all of the vertices, it must form a tree,
which we call a spanning tree since it “spans” the graph G. We call the problem of
determining the tree T the minimum-spanning-tree problem.' Figure 23.1 shows

Figure 23.1 A minimum spanning tree for a connected graph. The weights on edzes are shown,
and the edges in a minimum spanning tree are shaded. The total weight of the tree shown 1s 37. This
minimum spanning tree is not unique: removing the edee (b,) and replacing it with the edge (a. k)
yields another spanning tree with weight 37,

Prim’s algorithm

Like Kruskal's algorithm, Prim’s algorithm is a special case of the generic min-
imum-spanning-tree method from Section 23.1. Prim’s algorithm operates much
like Dijkstra’s algorithm for finding shortest paths in a graph, which we shall see in
Section 24.3. Prim’s algorithm has the property that the edges in the set 4 always
form a single tree. As Figure 23.5 shows, the tree starts from an arbitrary root
vertex r and grows until the tree spans all the vertices in V. Each step adds to the
tree A a light edge that connects A to an isolated vertex— one on which no edge
of A is incident. By Corollary 23.2, this rule adds only edges that are safe for A;
therefore, when the algorithm terminates, the edges in A form a minimum spanning
tree. This strategy qualifies as greedy since at each step it adds to the tree an edge
that contributes the minimum amount possible to the tree’s weight.

In order to implement Prim’s algorithm efficiently, we need a fast way to select
a new edge to add to the tree formed by the edges in A. In the pseudocode below,
the connected graph G and the root r of the minimum spanning tree to be grown
are inputs to the algorithm. During execution of the algorithm, all vertices that
are not in the tree reside in a min-priority queue () based on a key attribute. For
each vertex v, the attribute v.key 1s the minimum weight of any edge connecting v
to a vertex in the tree; by convention, v.key = oo if there is no such edge. The
attribute v. 7 names the parent of v in the tree. The algorithm implicitly maintains
the set A from GENERIC-MST as

A={{(v,v.x):veV-{r}—0} .

When the algorithm terminates, the min-priority queue Q is empty; the minimum
spanning tree 4 for G is thus

A={(v,v.r):veV -{r}}.

MST-PRIM(G, w, 1)

1 foreachu € G.V

2 U.key = o0

3 u.mw = NIL

4 rkey =0

5 0=6GYV

6 while Q #£ 0@

7 u = EXTRACT-MIN(Q)
8 for each v € G.Adj[u]

9 if v € Q and w(u,v) < v.key
0 V.o = U

1 v.key = wlu,v)

Figure 235 The exccution of Pnm’s algorithm on the graph from Figure 23.1. The root vertex
is d. Shaded edges are in the tree being grown, and black vertices are in the tree. At each step of
the algorithm, the vertices in the tree determine a cut of the graph, and a hight edge crossing the cut
15 added to the tree. In the second step, for example, the algorithm has a choice of adding either
edge (b, c) or edge (a,) to the tree since both are light edges crossing the cut.

Figure 23.5 shows how Prim’s algorithm works. Lines 1-5 set the key of each
vertex to oo (except for the root r, whose key is set to 0 so that it will be the
first vertex processed), set the parent of each vertex to NIL, and initialize the min-
priority queue Q to contain all the vertices. The algorithm maintains the following
three-part loop invariant:

Prior to each iteration of the while loop of lines 6-11,

L. A=Hv. ex)zic F={ry 0}

2. The vertices already placed into the minimum spanning tree are those in
V=l

3. For all vertices v € Q, if v.w £ NIL, then v.key < oo and v.key is
the weight of a light edge (v, v.7) connecting v to some vertex already
placed into the minimum spanning tree.

Line 7 identifies a vertex u € (incident on a light edge that crosses the cut
(V — 0, Q) (with the exception of the first iteration, in which ¥ = r due to line 4).
Removing u from the set () adds it to the set V' — Q of vertices in the tree, thus
adding (u.u.mw) to A. The for loop of lines 8—11 updates the key and & attributes
of every vertex v adjacent to u but not in the tree, thereby maintaining the third
part of the loop invariant.

The running time of Prim’s algorithm depends on how we implement the min-
priority queue Q. If we implement () as a binary min-heap (see Chapter 6), we
can use the BUILD-MIN-HEAP procedure to perform lines 1-5in O(V') time. The
body of the while loop executes |V| times, and since each EXTRACT-MIN opera-
tion takes O(lg V') time, the total time for all calls to EXTRACT-MIN is O(V 1g V).
The for loop in lines 8-11 executes O(FE) times altogether, since the sum of the
lengths of all adjacency lists is 2 |E|. Within the for loop, we can implement the
test for membership in Q in line 9 in constant time by keeping a bit for each vertex
that tells whether or not it is in (), and updating the bit when the vertex is removed
from (). The assignment in line 11 involves an implicit DECREASE-KEY opera-
tion on the min-heap, which a binary min-heap supports in O(lg V') time. Thus,
the total time for Prim’s algorithm is O(V gV + Elg V) = O(E1g V), which is
asymptotically the same as for our implementation of Kruskal’s algorithm.

We can improve the asymptotic running time of Prim’s algorithm by using Fi-
bonacci heaps. Chapter 19 shows that if a Fibonacci heap holds |V'| elements, an
EXTRACT-MIN operation takes O(lg V') amortized time and a DECREASE-KEY
operation (to implement line 11) takes O(1) amortized time. Therefore, if we use a
Fibonacci heap to implement the min-priority quene (0, the running time of Prim'’s
algorithm improves to O(E + Vg V).

UNIT 5

Q9. Explain Polynomial time verification using Hamiltonian cycle.

ANS:
Polynomial-time verification

We now look at algorithms that verify membership in languages. For example,
suppose that for a given instance (G, u. v, k) of the decision problem PATH, we
are also given a path p from u to v. We can easily check whether p is a path in G
and whether the length of p is at most k, and if so, we can view p as a “certificate”
that the instance indeed belongs to PATH. For the decision problem PATH, this
certificate doesn’t seem to buy us much. After all, PATH belongs to P—in fact,
we can solve PATH in linear time—and so verifying membership from a given
certificate takes as long as solving the problem from scratch. We shall now examine
a problem for which we know of no polynomial-time decision algorithm and vet,
given a certificate, verification is easy.

Hamiltonian cycles

The problem of finding a hamiltonian cycle in an undirected graph has been stud-
ied for over a hundred years. Formally, a hamiltonian cycle of an undirected graph
G = (V,E) is a simple cycle that contains each vertex in V. A graph that con-
tains a hamiltonian cycle is said to be hamiltonian; otherwise, it is nonhamilto-
nian. The name honors W. R. Hamilton, who described a mathematical game on
the dodecahedron (Figure 34.2(a)) in which one player sticks five pins in any five
consecutive vertices and the other player must complete the path to form a cycle

(a) (b}

Figure 342 (a) A graph representing the vertices, edges, and faces of a dodecahedron, with a
hamiltonian cyecle shown by shaded edges. (b) A bipartite graph with an odd number of vertices.
Any such graph s nonhamiltonian.

containing all the vertices.” The dodecahedron is hamiltonian, and Figure 34.2(a)
shows one hamiltonian cycle. Not all graphs are hamiltomian, however. For ex-
ample, Figure 34.2(b) shows a bipartite graph with an odd number of vertices.
Exercise 34.2-2 asks you to show that all such graphs are nonhamiltonian.

We can define the hamiltonian-cycle problem, “Does a graph G have a hamil-
tonian cycle?” as a formal language:

HAM-CYCLE = {(G) : G is a hamiltonian graph} .

How might an algorithm decide the language HAM-CYCLE? Given a problem
instance (G), one possible decision algorithm lists all permutations of the vertices
of G and then checks each permutation to see if it is a hamiltonian path. What is
the running time of this algorithm? 1f we use the “reasonable™ encoding of a graph
as its adjacency matrix, the number m of vertices in the graph is Q(./n), where
n = |(G)] is the length of the encoding of G. There are m! possible permutations

of the vertices, and therefore the running time is Q(m!) = Q(/n!) = Q(2v™),
which is not @(n*) for any constant k. Thus, this naive algorithm does not run
in polynomial time. In fact, the hamiltonian-cycle problem is NP-complete, as we
shall prove in Section 34.5.

Verification algorithms

Consider a slightly easier problem. Suppose that a friend tells you that a given
graph G is hamiltonian, and then offers to prove it by giving you the vertices in
order along the hamiltonian cycle. It would certainly be easy enough to verify the
proot: simply verify that the provided cycle 1s hamiltomian by checking whether
it is a permutation of the vertices of V' and whether each of the consecutive edges
along the cycle actually exists in the graph. You could certainly implement this
verification algorithm to run in O(n?) time, where n is the length of the encoding
of G. Thus, a proof that a hamiltonian cycle exists in a graph can be verified in
polynomial time.

We define a verification algorithm as being a two-argument algorithm A, where
one argument is an ordinary input string x and the other is a binary string y called
a cerfificate. A two-argument algorithm A verifies an input string x if there exists
a certificate y such that A(x,y) = 1. The language verified by a verification
algorithm A is

L={xe {01} : there exists y € {0, 1}" such that A(x,y) =1} .

Intuitively, an algorithm A verifies a language L if for any string x € L, there
exists a certificate y that A can use to prove that x € L. Moreover, for any string
x ¢ L, there must be no certificate proving that x € L. For example, in the
hamiltonian-cycle problem, the certificate is the list of vertices in some hamilto-
nian cycle. If a graph is hamiltonian, the hamiltonian cycle itself offers enough
information to verify this fact. Conversely, if a graph is not hamiltoman, there
can be no list of vertices that fools the verification algorithm into believing that the
graph is hamiltonian, since the verification algorithm carefully checks the proposed
“cycle™ to be sure.

Q 10. Write and explain the algorithm for Edit Distance Problem in detail using proper example.

ANS:

Edit distance. We illustrate dynamic programming us-
ing the edit distance problem. which 15 motvated by ques-
tions in genetics. We assume a finite set of characters
or letters. ¥, which we refer to as the alphabet, and we
consider sfrings or words formed by concatenating finitely
many characters from the alphabet. The edit distance be-
tween two words is the minimum number of letter inser-
tions, letter deletions, and letter substitutions required to
transform one word to the other. For example, the edit
distance between FOOD and MONEY 1s at most four:

FOOD — MOOD — MOND — MONED — MONEY

A better way to display the editing process 1s the gap rep-
resentation that places the words one above the other, with
a gap in the first word for every insertion and a gap in the
second word for every deletion:

F OO D
M ONEY

Columns with two different characters correspond to sub-
stitutions. The number of editing steps 1s therefore the
number of columns that do not contain the same character
twice.

Prefix propertv. It is not difficult to see that you cannot
get from FOOD to MONEY in less than four steps. However,
for longer examples it seems considerably more difficult
to find the munimum number of steps or to recognize an
optimal edit sequence. Consider for example

A L G O0OR

I T H M
A L T R T I S TTIC
Is this optimal or. equivalently., 1s the edit distance between
ALGORITHM and ALTRUISTIC six? Instead of answerning
this specific question. we develop a dynamic program-

ming algorithm that computes the edit distance between

an m-character string A[l..m| and an n-character string
Bl[l..n]. Let E(i, j) be the edit distance between the pre-
fixes of length i and j. that is, between A[1..i] and B[1..j].
The edit distance between the complete strings 15 therefore
E(m,n). A crucial step towards the development of this
algorithm 1s the following observation about the gap rep-
resentation of an optimal edit sequence.

PREFIX PROPERTY. If we remove the last column of an
optimal edit sequence then the remaining columns
represent an optimal edit sequence for the remaining
substrings.

We can easily prove this claim by contradiction: if the
substrings had a shorter edit sequence. we could just glue
the last column back on and get a shorter edit sequence for
the origimal strings.

Recursive formulation. We use the Prefix Property to
develop a recurrence relation for . The dynamic pro-
gramming algorithm will be a straightforward implemen-
tation of that relation. There are a couple of obvious base
cases:

¢ Erasing: we need i deletions to erase an i-character
string. E(i,0) = i.

e Creating: we need j insertions to create a j-
character string, F(0, 7) = J.

In general, there are four possibilities for the last column
in an optimal edit sequence.

e Insertion: the last entry in the top row is empty,
E(i,j)=E(i,j — 1) + 1.

s Deletion: the last entry m the bottom row 15 empty,
E(i,j)=E(i—1,7)+ 1.

¢ Substitution: both rows have characters in the last
column that are different. F(i,j) = E(i — 1.7 —
1)+ 1.

e No action: both rows end in the same character,
E(i,j)=FE(i—1,7-1).

Let P be the logical proposition A[i] # Bl[j] and denote
by | F| its indicator vaniable: |P| = 1if Pistrueand |F| =
0 1if P 1s false. We can now summarize and for i,7 = 0
get the edit distance as the smallest of the possibilities:

E(i,j—1)+1

E(i—1,5)+1
E(i—1,j—1)+|P|

min

E(i,j) =

The algorithm. If we turned this recurrence relation di-
rectly ito a divide-and-conquer algorithm, we would have
the following recurrence for the running time:

T(mn) = T(imn-1)4+T(m-1,n)
+Tim—-1,n—-1)+1.

The solution to this recurrence 1s exponential m m and n,
which 1s clearly not the way to go. Instead, let us build
an m + 1 times n + 1 table of possible values of E(i, j).
We can start by filling in the base cases, the entries in the
0-th row and column. To fill i any other entry, we need
to know the values directly to the left, directly above, and
both to the left and above. If we fill the table from top to
bottom and from left to nght then whenever we reach an
entry, the entries it depends on are already available.

int EDITDISTANCE(int m,n)
fori =0tomdo E[i,0] =i endfor;
for j =1 tondo E|0,j] = j endfor;
fori=1tomdo
forj=1tondo
Eli,j]=min{Efi.j — 1]+ 1,E[i — 1,j] +1,
Eli— 1,5 - 1]+ |A[] £ BUl)
endfor
endfor;
return E[m,n].

Since there are (m+1)(n+1) entries in the table and each
takes a constant time to compute, the total running time is
n O(mmn).

An example. The table constructed for the conversion of
ALGORITHM to ALTRUISTIC is shown in Figure 5. Boxed
numbers indicate places where the two strings have equal
characters. The arrows indicate the predecessors that de-
fine the entries. Each direction of arrow corresponds to a
different edit operation: horizontal for insertion, vertical
for deletion. and diagonal for substitution. Dotted diago-
nal arrows indicate free substitutions of a letter for itself

Recovering the edit sequence. By construction, there
1s at least one path from the upper lefi to the lower nght
comer, but often there will be several Each such path
describes an optimal edit sequence. For the example at
hand, we have three optimal edit sequences:

A L &G ORI T H M
AL TRTUIUGSBTTSOGC

Ell—v1—2—3—4—5—6—?—8—9 0
A 1 @—1—2—3—4—5—6—1—3—9
5 31 1_‘F_|—1—2—3—4—5—6—?—s
| | 4 El =l =l 4 Fl Fl =l
a 3 2 B3 L4 .5 57 —8
| |] Jl = El =l Fl = Fl =l
0 i 3 T3 —4—5—6—T—8
S A |
R 3| T 3| JT 3—J4—J5—J6—J?—Js
=157 b R
T |7 & 5 4 "4 "4 a4 ‘LTH—.S—E
[TRNRWENRN W
u E 7 6 5 5 5 5 5 sUSEEAg
| 1 ININININDS NS
M 85 8 7 6 6 6 £ B 6 6%Eb

Figure 5: The table of edit distances between all prefixes of
ALGORITHM and of ALTRUISTIC. The shaded area highlights the
optimal edit sequences, which are paths from the upper left to
the lower right corner.

A L G OR I T H M
A LT R UTISTTIOC

A L GOR I T HM
A L T RUTI S8 TTIOQC

They are easily recovered by tracing the paths backward.
from the end to the beginning. The following algonthm
recovers an optimal solution that also minimizes the num-
ber of insertions and deletions. We call 1t with the lengths
of the strings as arguments, R{m, n).

void R(int i, j)
ifi>0orj>0then
switch incoming arrow:
case ™ R(i— 1,7 —1); print(A[i], B[j])
case |- R(i—1,j); print(A[i],_)
case —: R(i,j — 1): print(-, B[j]).
endswitch
endif.

Summary. The structure of dynamic programming is
again similar to divide-and-conquer, except that the sub-
problems to be solved overlap. As a consequence, we get
different recursive paths to the same subproblems. To de-
velop a dynamic programming algonthm that avoids re-
dundant solutions, we generally proceed in two steps:

